
CHI 97 * 22-27 VI ARCH 1997 PAPERS

From Sufficient to Efficient Usage: An Analysis of
Strategic Knowledge

Suresh K. Bhavnani
Department of Architecture
Carnegie Mellon University
Pittsburgh PA 15213 USA

Tel: +1-412-363-8308
E-mail: suresh@andrew.cmu.edu

ABSTRACT
Can good design guarantee the eflicient use of computer
tools? Can experience guarantee it? We raise these
questions to explore why empirical studies of real-world
usage show even experienced users under-utilizing the
capabilities of computer applications. By analyzing the use
of everyday devices and computer applications, as well as
reviewing empirical studies, we conclude that neither good
design nor experience may be able to guarantee efficient
usage. Efficient use requires task decomposition strategies
that exploit capabilities offered by computer applications
such as the ability to aggregute objects, and to manipulate
the aggregates with powerful operators. To understand the
effects that strategies can have on performance, we present
results from a GOMS analysis of a CAD task.
Furthermore, we identify some key aggregation strategies
that appear to generalize across applications. Such
strategies may provide a framework to enable users to move
from a sufficient to a more ef)icient use of computer tools.

Keywords
Strategies, Task Decomposition, CAD, Aggregation.

INTRODUCTION
For centuries, apprentices have acquired the skills of a craft
by observing and working with master craftsmen. An
important component of that skill is the et%cient use of
tools to produce quality artifacts. A turn-of-the-century
book on craftsmanship [13] eloquently describes that skill.

Craftsmanship is the result of a series of well-
clirected single efforts, each representing so much
physical and mental power. Each of these efforts,
therefore should be vahted, so that no waste takes
place, and the beauty of hand labour is seen largely
in the “trick of the tool’s true play” (pg. 28).

While such descriptions capture the essence of et%cient tool
usage, we do not yet understand how to get users to make
efficient use of computer applications. A dominant goal of
the HCI field has been to design facile interfaces that reduce
the time to learn computer tools. This direction is expected
to move users rapidly into production mode with the hope

Permissionto make digitablmrdcopiesof all or pm-tof this material for

PerxmKdor classroom use is grantedwithoutke provided that the copies
arenotmade or distributed for profit or commercial advantage. the copy-
right notice, the liile of the publimt ion aod its date appear, md notice is
given that copyright is by permission of the ACM. Inc. To copy otherwise,
to republish, to posI on sewers or to rediskibute to lists, requires specific
permission imdlor fee

Bonnie E. John
HCI Institute

and Departments of Computer Science
and Psychology,

Carnegie Mellon University
Pittsburgh PA 15213 USA

Tel: +1-412-268-7182
E-mail: Bonnie. John @cs.cmu.edu

that they refine their skills through experience. However
empirical studies of real-world usage show that even
experienced users do not use computer tools efficiently. For
example, our analysis of real-world CAD usage [4] has
shown that although CAD users have few problems using
the cmefully designed tools available through the interface,
they do not seem to acquire the knowledge to make efficient
use of the system even after formal training and many years
of experience.

We believe that the efficient use of computer tools is crucial
to productivity and it is imperative that we understand its
basic nature. This paper is an analysis of efficient usage
and attempts to arrive at some general claims about that
basic nature. We begin by asking the question “Can good
design guarantee efficient usage?” An analysis of the use of
everyday objects as well as sophisticated computer
applications reveals that good design may not in itself
guarantee efficient usage. Next, we ask the question “Can
experience guarantee eftlcient usage?” To address this
question we review the results from three empirical studies
in different domains. These empirical studies reveal that
experience is also not a good guarantor of efficient usage.

If good design and experience cannot provide the required
knowledge to make efficient usage, what can? Based on the
examples from the empirical data, we propose that the key
to efficient usage resides in task decomposition strategies
that exploit a device’s capabilities - knowledge that must be
made explicit to users during training. To understand the
effects that strategies have on performance, we discuss the
results from a GOMS analysis which confirms observations
from another study. Finally we demonstrate some key task
decomposition strategies that appear to generalize across
different applications. We conclude by stressing the
importance of identifying and teaching s~ategies to enable
users to move from a suflcient to a more eficient use of
computer tools.

CAN DESIGN GUARANTEE EFFICIENT USAGE?
Norman [16] suggested that an important aspect of a well-
designed artifact is its affordance, which refers to “those
fundamental properties that determine just how the thing
could possibly be used” (pg. 9). Based on this principle,
when a door is to be opened by pulling, a good design for
its handle is a vertical bar that affods grasping and pulling;
a poor design is a flat plate that affords pushing.

CHI 97, Atlama GA LISA
Copyright 1997 ACM 0-8979 1-802-9/97/03 .S3.50

91

PAPERS CHI 97 * 22-27 MARCH 1997

In the simple case where a person opens a door for herself,
the above design is successful and can guarantee efficient
usage. However, consider the slightly more complex task
of a person opening a spring-loaded door for another person
carrying a heavy load. In such a situation there are at least
two ways to open the door regardless of the handle’s design.
One approach, as shown in Figure 1A, is to stand on the
side of the handle and pull the door open. However, when
this is done, the arm of the door-opener obstructs the entry
for the person with the load. At this point, either the door-
opener has to move out of the way by moving behind the
person, or the person with the load has to hold the door ajar
with a foot or shoulder. An efficient way to perform the
same task (well known by doormen at hotels) is to stand on
the side of the hinge before opening the door and therefore
to movide unobstructed entrv to the person with the load as
sh~wn in Figure lB. - -

A. Opening a spring-loaded door from the handle side

B. Opening a spring-loaded door from the hinge side

Fizure 1. Inefficient and efficient methods for a door-ooenex
(s~own in black) to open a spring-loaded door for someone
carrying a heavy load.

The above example demonstrates that although good design
is essential in getting the task done, it cannot guarantee that
the task is done efficiently. Feedback may provide crucial
information through trial and error. However, it is difllcult
to demonstrate how a design for the handle itself could
express immediately and unambiguously the efficient way
of opening the door for someone else.

Another example of the design and efficient use of an
evegday object is the hammer. The handle of a hammer
could be designed to ergonomically fit the human hand as
well as afford gripping. However it cannot tell the user that
an efficient method to drive in a nail is: (1) tap the nail to
guarantee its proper angle of entry and to hold it in place,
(2) remove the fingers holding the nail, and (3) drive the
nail in with heavier blows.

While the design of everyday objects cannot guarantee their
efficient usage, is that also true for more complex computer
applications? After all, the interface design of computer
applications typically have a much larger space of design
possibilities. Consider the design of commands such as
PLACE Lm, PLACE SHAPE, PATIERN AREA, and
MIRROR-COPY in a CAD system. These commands have
simple enough interfaces and are straightforward to use for
tasks such as drawing a line or mirroring a shape.

However, when tasks are slightly more complex, things are
not so straightforward. For example, as described in our
analysis of real-world CAD usage [4], we observed an
experienced CAD user draw two patterned shapes which
were mirror copies of each other. As shown in Figure 2A,
he first drew Shape-1, aggregated it with a Fence command,
and then mirror-copied the shape to create Shape-2. Because
he mirrored too early, he had to pattern both shapes. An
efficient way of doing the same task, as shown in Figure
2B, would have been first to draw and pattern Shape-1
(Detail), fence the patterned shape (Aggregate), and only
then mirror-copy it to create Shape-2 (Manipulate).
Furthermore, he could have chosen better methods to detail
Shape-1 (by drawing it as a shape and automatically
patterning it) as well as to aggregate it (by using the
simpler PLACE FENCE BL(XK command).

Therefore, even in computer applications, we see that the
knowledge to use tools efficiently may have little to d
with the design of the tool itself. It appears that efilcient
usage requires knowledge that resides outside the tools.
Therefore, while good design can lead to suficient usage, it
may not be able to guarantee eficient usage.

CAN EXPERIENCE GUARANTEE EFFICIENT
USAGE?
If good design cannot guarantee efficient usage, can
experience provide the necessary feedback to discover
methods of efficient usage? We have already shown that
even experienced CAD users do not use efficient methods to
draw repeated patterns. But is this generally true for other
applications? Do experienced users of other applications
also use systems inefficiently?

In an effort to understand how users develop computer
interaction skills over a long period, Nilsen et al. [15]
studied the development of 26 graduate students from a
Business school learning how to use Lotus 1-2-3 over a
period of 16 months. Although these students were tested
periodically on tasks in a laboratory, they acquired their
skills outside the laboratory from various sources such as
group use, training sessions, and documentation. Of these
26 students, 14 (referred to as skilled novices) completed all
the tasks correctly and were chosen to be compared with
experts who had 3 or more years of Lotus 1-2-3 experience.
The results of the study showed that even after 16 months
of use, the skilled novices lagged behind the experts in
quantitative as well as qualitative measures. For example,
while the skilled novices significantly improved the time
they took to perform various tasks over the 16 month

92

CHI 97 * 22-27 MARCH 1997 PAPERS

A. Inefilcient Method

1. Draw Shape-
with Lines

B. Effkient Method

1. Draw Shape-1

I
as a Polygon

2. Aggregate Shape-”
with Fence Shape

r?a.?”
.a

Id

H

3. Mirror-Copy Shape-1 4. Manually Pattern
Shape- 1 and Shape-2

2, Automatically 3. Aggregate Shape-1 4. Mirror-Copy Shape-1

‘at’em ‘hape-l I I ‘i* ‘ence‘lOck I I II , , , 1 \

Detail Aggregate Manipulate

Figure 2. Inefficient and efficient methods to perform a CAD task.

period, they took twice the time to complete the same tasks over say, rows 1 to 10 in column “a” is: @sum(al ..al O).
& did the -experts. But more impo~nt to our cument
discussion is the reason why the experts completed the tasks
in a shorter time.

Although the skilled novices and experts both completed the
tasks correctly, the difference in completion times could not
be entirely explained by the speed of their interaction or the
mental preparation times. The most striking difference
between the two groups was the methods they used to
complete the tasks. For example, a task required five
columns to be set to a particular width X, and one to be set
to a different width Y. The efficient method to perform this
task involves two commands: one to set all the columns to
width X, and the second to set the width of the exception to
Y. WMle 6 of the 7 experts used this method, only 2 of the
14 skilled novices did; 12 skilled novices changed the width
of each column individually.

Another task nayired the specification of a formula to
perform a summation over a column of numbers. The
efficient way of specifying the formula to calculate the sum

However, 3 of the 14 skilled novices used a less et%cient
method of specifying the formula. They chose to select
each cell in the range and ald them up as in:
@sum(al+a2+a3+a4+a5+a6+a7+a8+a9+al O).

In a cross-sectional as well as a longitudinal study of UNIX
users, Deane et al. [8] found that it took several years of
academic and practical training before students could specify
composite commands. Composite commands can be created
by using alvanced features to concatenate several simple
commands. Examples of advanced features include the
redirection symbol (>), which can be used to redirect the
output of a command to a file, and the pipe (l), which can
be used to redirect the output of a command directly to
another command. So, for example, if a user needed to
print out the contents of a directory on a printer, one way is
to use the redirection symbol to create an intermediate file
and then send that file to the printer as in: 1s > temp; lpr
temp. Another way to- do the same task with fewer
keystrokes is to use a pipe to directly send the output of the
first command to the second as in: 1s I lpr.

93

PAPERS CHI 97 * 22-27 MARCH 1997

The study showed that even experts, who had taken an
operating-systems course and had three or more years of
experience with UNLX, performed poorly on tasks requiring
composite commands such as the one described above. In
contrast they performed much better on single commands
(such as “pwd” which prints the working directory on the
screen) or simple multiple commands (such as “rm Y 1”
which deletes the file Y 1 from the directory).

The above empirical studies in CAD, spreadsheets, and
UNIX show that experience does not necessarily guarantee
efficient usage. The users tend to master the use of simple
commands but do not appear to progress towards using
them in an eftlcient way to complete more complex tasks.
But if good design and experience cannot provide the
required knowledge to produce efticient usage, what can?

STRATEGIES - THE KEY TO EFFICIENCY
Whether one is opening a door or using a CAD system, the
issue of eftlciency seems to arise when there is more than
one way of doing a task particularly when the task is
complex. The knowledge of these alternate ways and how
to choose between them can be refened to as strategic
knowledge. Strategic knowledge has been studied in a
variety of domains such as learning and problem solving.
For example Anderson describes strategic learning as the
“improvement that comes about because people learn the
optimal way to organize their problem solving for a
particular domain” [1] (pg. 257); Siegler and Jenkins defie
a problem solving strategy as “any procedne that is
nonobligatory and goal directed” [17] (pg. 11).

In the context of using a device efficiently, what appears to
be crucial is the way a task is decomposed in order to
exploit the capabilities of the device. For the current
analysis, a strategy can therefore be seen as a method of task
decomposition that is non-obligatory and goal directed.
Furthermore, a strategy can be considered to be more
efficient than another strategy if it improves some
performance variable for the same task. The value of that
improvement is dependent on the value that a user attaches
to the performance variable.

A prime CAD example of an efficient strategy is the
method to do the task detibed in Figure 2B. The user
(mf- to as Bl) had the task to draw two LAaped
polygons which were mirror copies of each other. The L
shaped polygons were to be patterned with dots and triangles
denoting concrete. As described earlier in Figure 2A, B 1 did
not pattern the shape before mirror-copying it. This
resulted in him having to pattern both shapes.
Furthermore, as he drew the shape with lines, he could not
automatically pattern the shapes as the PATIERN AREA
command works only on closed polygons. He therefore
patterned both shapes by manually copying dots ad
triangles from a nearby shape.

An alternate way of performing the same task could have
been to draw the shape as a polygon to enable it to be
patterned automatically. Furthermore, as described earlier,
the shape could have been drawn and patterned before it was

mirror-copied to avoid having to pattern both the shapes.
This approach of detailing all components of a figure before
its manipulation has been named the Detail-Aggregate-
Manipulate (DAM) strategy [4].

While such strategies appear powerful, what am their
measurable effects on performance? Do such strategies have
effects that are worth considering?

How Strategies Affect Performance
To rigorously understand the effects of efficient strategies on
performance, we conducted an NGOMSL analysis (a variate
of GOMS [6] described in [10]) on data that has been
described in Figure 2 as well as in earlier work [4].

The task was analyzed by constructing two computational
NGOMSL models. The first model (referred to as the Real-
World Model) represented the method used by B 1 to
complete the task, as shown in Figure 2A. This model fits
the error-free real-world data to within 6% of the total time
to execute the task. The second model (referred to as the
Ideal Model) performed the same task using the DAM
strategy. In addition, the shapes were drawn as polygons
and the pattern drawn automatically. The models we~
created using the application GLEAN [18], a GOMS
interpreter. Figure 3 shows GLEAN’s calculation of the
overall reduction of time to do the task using the Ideal
Model. Besides reducing the time to do the second shape by
42%, the Ideal Model did not increase the time to do the
first shape. The reduction in time to dmw Shape-1 is
achieved by using higher level commands that draw and
pattern shapes as opposed to commands that draw and
manipulate lines and dots.

Reduction in Time to

Complete the Task

120 T

100-

,g 40
+

t
20 +

OL
Real- Real- Ideal
World World Model
Data Model

❑ Setup ❑ Shape-1 ■ Shape-2

Figure 3. Comparison of the error-free times to do the basic
sub-tasks of setup and drawing the shapes.

94

CHI 97 * 22-27 MARCH 1997 PAPERS

The reduction in creating Shape-2 is achieved by better
planning to exploit the occurrence of identical shapes in the
task (patterning before mirror-copying) as well as the use
of commands that reduce low-level precision inputs (PLACE
FENCE BLOCK and PATTERN AREA), These methods allow
the Ideal Model to show an overall reduction in execution
time of almost 40%.

One reason that the Ideal Model is faster is that it requires
fewer inputs of all types; fewer keyins, as well as fewer
selections of menu items, lines, and points (Figure 4).
Fewer inputs may be a generalized feature of more efficient
strategies. Nilsen et al. [15] also reported this fact in their
observations of spreadsheet users described earlier. The
study reported that the inefficient strategy used by the
skilled novices to change the column widths more than
doubled the number of keystrokes required to perform the
task.

The fewer manual inputs of the Ideaf Model may allow us
to estimate the reduction in time to commit and recover
from errors. Human Error Probability (HEP), a concept
used in Human Factors to estimate the occurrence of errors,
is the ratio of the number of errors that occur in a task to
the number of opportunities for error [12]. Assuming that a
trained user would have correct knowledge of efficient
strategies and apply it in appropriate situations, then the
manual inputs are the main opportunity for error.
Therefore, a strategy with fewer manual inputs may produce
fewer errors and the user could therefore spend
correspondingly less time committing and recovering from
them. Our empirical data collected in the real-world show
that typing has a lower HEP than selecting objects (menu
items, lines, and points) in this system. In addition, these

Frequency of Inputs

60
1

50-

40- -
8
;
~30-

8
20

10-
I

+ +L +
Keyins Menu Lines Points

Items

I ❑ Real-World Model ■ Ideal Model
!

Figure 4. Comparison of the frequency of inputs in the
Real-World Model and the Ideal Model.

Reduction in Time to Commit and

Recover From Errors

50 T

45
40 I

10+

5
0 L

Real- Ideat
World Model
Data

■ Keyin Errors ❑ Object Selection Errors
I 1

Figure 5. The estimated reduction in time due to fewer
expected errors if we assume that error time is proportional to
frequency.

different types of errors have different characteristic recovery
times. Combining these HEPs and characteristic recovery
times, with the number of inputs in the Ideal Model, we can
estimate the potential for savings due to fewer errors for
more efficient strategies as shown in Figure 5.

The above analysis shows some important effects of using
efficient strategies on performance. Efficient strategies
appear to reduce mouse and keyboard inputs leading to a
lower probability of errors, and reduction in the overall time
to perform the task. This result is of value to CAD users
such as B 1 who frequently perform drawing tasks in a
production mode. Users in our ethnographic study explicitly
stated the importance of improving task execution time [3].

But how do strategies such as DAM enable users to nduce
low-level inputs? We have stated earlier that an efficient
strategy must exploit some capability provided by the
device. What is the DAM strategy really exploiting?

The Technology of Aggregation
We believe that the concept of aggregation lies at the heart
of the DAM strategy, where aggregation is the ability to
group disjoint elements in various ways and to manipulate
these groups with powerful operators. Computationally,
the power of aggregation comes from the fact that all
elements of an aggregate, regardless of their number, can be
processed by the application of a single function. In a
simple case, if ten elements are stored in an aggregate, and a
delete function is applied to the aggregate as a whole, all ten
elements will be deleted. Furthermore, in most cases, from
the user’s perspective, the time difference between deleting
one element and deleting many elements is negligible.

95

PAPERS CHI 97 * 22-27 MARC% 1997

Aggregation has been utilized by CAD developers to help
users organize different types of information. Most
engineering CAD systems provide hierarchies of
predetermined aggregates such as design files composed of a
fixed number of layers, and polygons, such as a rectangle,
with a fixed number of sides that cannot be disaggrcgated
into lines. They also provide userdefined aggregates such
as graphic groups and fences that allow users to aggregate
arbitrary graphic elements. Because of the pervasive use of
aggregation in CAD systems, strategies of aggregation such
as DAM become crucial to understand and use in order to
exploit these new capabilities. The DAM strategy appears
to be powerful as it can be used to exploit concepts like
symmetry and three-dimensional projection [4] that me
common in domains such as architectural design [9].

Resemchers have stressed the importance of approaching
computer-aided drafting differently from manual drafting.
For example, Mitchell [14] describes the efficient use of
CAD in terms of “virtuosity” or the skills to “form a
structural conception of the object that is to be represented
and to map this onto the token structures and construction
operations provided by the medium” (pg. 60). The DAM
strategy offers a concrete way of mapping the structure in a
drawing such as symmetry, to the operations of aggregation
and manipulation provided by CAD.

We are also not the first to recognize the advantage of
aggregation. McLuhan, in his description of automation,
foreshadowed the concept of aggregation when he observed
that “Electric means of storing and moving information
with speed and precision make the largest units quite as
manageable as small ones” [11] (pg. 311). He concluded
that automation “is a way of thinking, as much as it is a
way of doing” (pg. 302). Clearly, the key advantage of
aggregation is that it allows us to make the computer do
many tasks autornutically, thereby reducing the manual
work involved.

The commands of aggregation along with strategies to
exploit them can be mfkrred to as the technology of
aggregation. We found that this concept was not unique to
CAD. Word processors provide tools to aggregate words
into sections and paragraphs, and spreadsheets provide the
ability to temporarily group columns in order to change
their attributes as a group. Given the pervasive nature of
aggregation, we were motivated to see if first, there we~
other strategies of aggregation besides DAM, and second, if
these strategies generalized across applications.

Strategies of Aggregation
Our analyses revealed that there are at least three strategies
of aggregation that generalize across applications. Figure 6
shows examples of strategies that could be useful in
performing specific tasks in CAD, word processing, and
spreadsheet applications. The goal of these examples are to
demonstrate the generality of these strategies of aggregation
and some may appear obvious. However, we have
empirical evidence to show that at least five examples
(shaded gray in the figure) represent situations where
experienced users did not use efficient strategies.

At the top of Figure 6, we show examples of the Detail-
Aggregate-Manipulate strategy. We have already discussed
at length the advantage of this strategy to exploit structure
in a drawing as well as two studies showing experienced
CAD users who did not make use of it [4]. The same
strategy could be used in a spreadsheet application to cteate
a row of data, aggregate it into a range, and operate on the
range using a formula. Cragg et al. [7] have shown that
55% of users in their study did not use the range option. In
a word processor the strategy could be used to copy
paragraphs of text across files.

Next, the Aggregate-ModifyAll-ModifyException strategy
allows a user to exploit aggregation to handle exceptions.
So, for example, if all except one of a group of elements
need to share an attribute, it is better to modify all of them
and then change the exception, instead of modifying each on
its own. If an application supports selective disaggregation
or the ability to drop an element from an aggregate, then an
alternate version of this strategy is to aggregate a group of
elements, drop the exception, and then modify the aggregate
(Aggregate-DropException-Modify). We have evidence in
our data (still in the process of analysis [2]) to show that
this version of the strategy was not used for a highly
repetitious CAD task. The Aggregate-ModifyAll-
ModifyException strategy could also be used to modify the
width of columns (as discussed earlier in the study on Lotus
1-2-3 users [15]) as well as in a word processor to handle
exceptions during the font modification of a paragraph.

Finally, the Locate-Aggregate-Manipulate-Modify strategy
in CAD could be used to exploit similarity in a drawing by
copying a figure that is already drawn, and modifying it.
Once again we have data to support the claim that this
strategy is not used by CAD users (also in the process of
analysis [2]). In spreadsheets, this strategy could be used to
copy and modify complex sets of formulae. The formulae
shown contain absolute and relative referencing of cells
which can be modified and reused in another location. In
word processors the strategy could be used to copy and
modify a section containing complex formatting,

The above description of commands and strategies of
aggregation provides a framework for understanding the
technology of aggregation available in widely used
applications. While there may be other strategies of
aggregation, as well as other technologies to understand
more fully, it provides the fmt step towards describing a
way to show users how to move from a sufficient to a more
efficient use of computer applications.

CONCLUSION
There are many eloquent descriptions of the ideal way to use
tools. These include craftsmanship as understanding the
“trick of the tool’s true play”[13], and “virtuosity” in the
use of CAD [14]. This paper has proposed the concept of
strategy as a way to operationalize these descriptions. We
have demonstrated that whether in the use of eve@ay
objects or in the use of complex applications, neither good
design nor experience may be able to guarantee the
discovery of efficient strategies. Furthermore, in the use of

CH197 * 22-27 MARCH 1997 PAPERS

Figure 6. Three strategies of aggregation that generalize across applications. Each cell shows an example of a task that can be
performed using a strategy. The shaded cells represent situations reported in empirical studies where efficient strategies were not
used.

97

PAPERS CHI 97 * 22-27 MARCH 1997

computer applications, efficient strategies can have strong
effects on performance variables, such as the number of
mouse and keyboard inputs, that tend to be error-prone and
time-consuming.

Based on empirical studies across different computer
applications, we discovered that users tend to have trouble
with the effective use of aggregation, a powerful mechanism
for the manipulation of information. A close inspection of
the empirical data and the concept of aggregation reveald
strategies of aggregation that appear powerful and general.

Besides strategies that generalize across applications, there
may be others at weaker levels of generalization. At one
level there may be strategies that generalize only within a
class of applications such as CAD. At a still weaker level
there may be strategies that generalize only for certain tasks
relevant to a single package, for example, to deal efficiently
with the idiosyncrasies of a product. We believe that
training should explicitly include strategies at all these
levels of generalizations as they could reduce the complexity
of learning procedures. Carefully stated generalizations have
been shown to be more effective than specific instructions
to enable novice users to transfer knowledge to novel tasks
[5]. However, the et%cacy of such strategic training
remains a question to be answered empirically.

In addition to providing strategies during training, we have
suggested other approaches to enable users make more
efficient use of computer applications [3, 4]. These include
providing extrinsic motivation to learn better ways through
improved management and peer interaction, as well as
providing feedback through systems that detect and suggest
remediations for ineillcient usage. However, all these
approaches directly benefit from an understanding and the
explicit definition of the strategic knowledge neeessary for
efficient usage as we have described. Such a fi-arnework,
therefore, may provide an important step towards enabling
users to move from a sufficient to a more efficient use of
computer tools, and captures at least some of what
apprentices have for centuries learned through watching a
master craftsman.

ACKNOWLEDGMENTS
This research was supported in part by the U. S. Army
Corps of Engineers Construction Engineering Research
Laboratory (USA-CERL) Contract# DACA88-94-K-OO06
and by the National Science Foundation, Award# IRI-
9457628. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of USA-CERL, NSF, or the U. S.
Government. The authors acknowledge the contributions of
O. Akin, U. Flemming, J. Garrett, D. Shaw, G. Vallabh~
and Bentley Systems for the academic edition of
MicroStation.

REFERENCES
1,

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Anderson, J.R, Cognitive Psychology and its
Implications. W.H.Freeman and Company, New York,
1990.
Bhavnani, S.K. How Architects Draw with Computers: A
Cognitive Analysis of Real-World CAD Usage.
Unpublished dissertation proposal, Carnegie Mel Ion
University, Pittsburgh, USA, 1996,
Bhavnani, S.K., Flemming, U., Forsythe, D.E., Garrett,
J.H., Shaw, D.S., and Tsai, A. CAD Usage in an
Architectural Office: From Observations to Active
Assistance. Automation in Construction 5 (1996), 243-
255.
Bhavnani, S.K., and John, BE. Exploring the Unrealized
Potential of Computer-Aided Drafting. Proceedings of CHI
’96 (1996), 332-339.
Catrambone, R. Specific Versus General Procedures in
Instructions. Human Computer Interaction 5 (1990), 49-
93.
Card, S.K., Moran, T.P., and Newell, A. VW Psychology
of Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.
Cragg, P.B. and King, M. Spreadsheet Modeling Abuse:
An Opportunity for OR? Journal of the Operational
Research Society 44 (1993), 743-752.
Deane, S.M., Pellegrino, J.W., Klatzky, R.L. Expertise i n
a Computer Operating System: Conceptualization and
Performance. Human-Computer Interaction 5 (1990), 267-
304.
Flemming, U., Bhavnani, S.K., John, B.E. Mismatched
Metaphor: User vs. System Model in Computer-Aided
Drafting. Design Studies (in press).
Kieras, D. A Guide to GOMS Model Usability Evaluation
using NGOMSL. in M. Helander & T. Landauer (eds.) The
handbook of human-computer interaction (Second
Edition). Amsterdam: North-Holland (in press).
McLuhan, M. Understanding Media: The Extensions of
Man. Signet, 1964.
Miller, D.P. and Swain, A.D. Human Error and Human
Reliability, in Gavriel Salvendy (cd.) Handbook of Human
Factors, New York: John Wiley and Sons, Inc., 1987, 219-
250.
Miller, F. The Training of a Craftsman.. John Lane
Company, New York, 1906.
Mitchell, W.J. Computer-Aided Design Media A
Comparative Anal ysis. in Penz, E. (cd.) Computers in
Architecture - Tools for Design. Longman, 1992.
Nilsen, E., Jong H., Olson J., Biolsi, I., Mutter, S, The
Growth of Software Skill: A Longitudinal Look at Learning
and Performance. Proceedings of INTERCHI ’93. (1993),
149-56.
Norman, D., The Design of Everyday Things. Doubleday,
New York, 1988.
Siegler, R.S., Jenkins, E. How Children Discover New
Strategies. Lawrence Erlbaum Associates, New Jersey,
1989.
Wood, S. GLEAN - GOMS Lunguage Evaluation and
Analysis. University of Michigan, 1995.

98

