Designs Conducive to the Use of Efficient Strategies

Suresh K. Bhavnani
HCI Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
Tel: +1-412-268-5663

E-mail: suresh@cmu.edu

ABSTRACT

Studies on the widespread inefficient use of complex computer
applications have suggested that users need to learn efficient
strategies in addition to learning how to use tools. This paper
argues that our growing understanding of strategic knowledge can
be used to guide designers devel op systems which are conducive to
the use of efficient strategies. The paper first describes ten general
strategies which appear to be useful across three computer
application domains. Next, the paper discusses the functionalities
required to execute the ten strategies, and what makes them
conducive to strategy use. An analysis of six major computer
applications in three domains reveals that these functionalities are
not consistently offered, and how their absence directly affects the
performance of complex tasks. The anadysis leads to questions
related to the generality of the results, the problem of featurism,
and how strategy-conducive systems could facilitate the transfer of
knowledge across applications. The paper concludes by briefly
describing how we intend to use the strategy framework to develop
analysis methods for designers and trainers.

Keywords
Strategy, strategic knowledge, efficiency, design, training.

1. INTRODUCTION

Advancesin interaction design such as direct manipulation, and its
widespread acceptance, have greatly contributed to the ease with
which users begin to use computer applications. Increasingly,
users are able to explore and begin to use applications they have
never used before, often with little or no training.

However, the knowledge to use direct manipulation tools does not
seem to aid users to perform complex tasks efficiently. Several
studies have shown that despite training and many years of
experience, many users with basic command knowledge do not
progress to an efficient use of applications[3, 6, 9, 10, 12]. Recent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DIS'00, Brooklyn, New Y ork.

Copyright 2000 ACM 1-58113-219-0/00/0008....$5.00.

338

research has led us to believe that the efficient use of computer
applications requires strategic knowledge in addition to tool
knowledge [1, 5, 6]. The analysis of strategic knowledge has
helped identify a set of strategies which are generally useful across
computer applications. For example, computer users can perform
many iterative tasks efficiently by using strategies which exploit
the aggregation of objects [6] provided by common applications
such as word processors, spreadsheets, and computer-aided
drafting (CAD) systems. This paper explores how our
understanding of general strategies can be used to guide designers
to check if their designs are conducive to the use of efficient
strategies.

The paper begins by presenting ten general strategies which appear
to be useful across three computer domains. word processors,
spreadsheets, and CAD systems. Next, the paper describes how
these strategies are dependent on specific functionalities being
present in an application, and the design issues relevant to making
them conducive to strategy use. An anaysis of six major
applications in the above three domains reveals that even major
applications do not consistently provide important functionalities
required to execute efficient strategies. The absence of these
functionalities directly impacts opportunities to perform tasks
efficiently.

The above analysis prompts severa questions related to the
genera applicability of the results, the problem of featurism, and
how strategy-conducive systems could facilitate the transfer of
strategic knowledge. The paper addresses these questions and
concludes by presenting two research directions which we are
pursuing. First, the development of an analysis method to guide
designers to check if their designs are conducive to the use of
efficient strategies. Second, the development of principles, based
on strategic knowledge, which could guide the design of more
effective training. As both these approaches are based on the
common strategic framework developed in this paper, it is hoped
that it leads to more collaboration between designers and trainers
with the ultimate goal of making users more efficient in the use of
complex computer applications.

2. STRATEGIESTHAT GENERALIZE

Several empirical studies have aided in our understanding about
the efficient use of complex computer applications. These studies
include the observation of real-world users [3, 9, 12], cognitive
analysis of their interactions [1, 4, 5, 6, 7], the anaysis of
functionalities provided by complex computer applications [6],

and attempts to teach the efficient use of complex computer
applications[2, 8].

A key result from the above research is that complex computer
applications (such as word processors, spreadsheets, and CAD
systems) typically provide many methods to complete the same
task. These non-obligatory and goal-directed methods have been
called strategies [4]; the knowledge of these alternate methods and
how to choose between them has been referred to as strategic
knowledge.

Our cognitive analyses of real-world usage revealed that some
strategies are more efficient than others in terms of performance
variables such as task time, errors, and ease of modifying content
[1, 3, 7]. Furthermore, our analysis of complex computer
applications led to the identification of three efficient strategies
which generalize across computer applications [6, 7]. This paper
expands that set to ten genera strategies. These strategies were
identified through empirical observations, and by exploring the
powers and limitations of complex computer applications [4]. We
are currently attempting to identify a more systematic approach to
discover such strategies.

As shown in Table 1, the ten strategies fall under four categories:
iteration, propagation, organization, and visualization. Iteration
strategies exploit the power of computers to operate on groups of
objects. Such strategies have the potential to reduce the time and
errors to perform iterative tasks [1, 4, 5, 7]. Propagation strategies
exploit the power of computers to modify objects which are
connected through explicit dependencies. These strategies allow

users to propagate changes to large numbers of inter-connected
objects. Organization strategies exploit the power of computers to
construct and maintain organizations of information. Such
strategies allow for quick modifications of related data. Finally,
visualization strategies exploit the power of computers to display
information selectively without altering its content. Strategies of
visualization can reduce visual overload and navigation time [11].

The following discussion will attempt to show how the ten
strategies in the above four categories are useful and meaningful in
word processing, spreadsheet, and CAD tasks. While many of the
strategies may appear obvious, empirical evidence shows that
opportunities to use them are often missed by users performing
complex tasks[1, 9, 12].

2.1 Iteration Strategies

Thefirst three strategiesin Table 1 exploit the power of computers
to perform iteration over groups of objects. Strategy 1 encourages
the reusing (and modification if appropriate) of existing groups of
objects instead of creating new ones from scratch. This strategy is
useful regardless of the data objects being created (e.g. paragraphs
in word processors, formulas in spreadsheets, or graphic elements
in CAD systems). Strategy 2 reminds users to check if an original
group of objects is complete and error-free before making many
copies, a useful strategy to avoid having to make changes in each
of the copies. Once again checking before replication is a general
strategy regardless of the data objects involved.

Finally, Strategy 3 specifies that exceptions in a group should be
handled (dropped or added) before applying operations on the

Table 1. Ten general strategies and how they are useful in word processing, spreadsheet, and CAD tasks.

General strategies Word processing examples

Spreadsheet examples

CAD examples

Iteration

1. Reuse and modify
group of objects

Copy and modify an existing paragraph
to create anew one

Copy and modify an existing table
and formulas to create anew one

Copy and modify an existing graphic
arrangement to create a new one

2. Check original before
making copies

Check if paragraph is correct and com-
plete before making many copies

Check if column headings are correct
and compl ete before copying to create
new table headings

Check if window in building facade
is correct and compl ete before making
many copies

3. Handle exceptions before
modification of groups

Group paragraph, drop a sentence, then
modify group

Group al information, drop table head-
ings, then modify group

Group graphic elements, drop an ele-
ment, then modify group

Propagation

4. Make dependencies known
to the computer

Make paragraphs dependent on aformat
definition

Make formulas dependent on numbers
in cells

Make window in building facade depen-
dent on a graphic definition

5. Exploit dependencies
to generate variations

Modify style definitions to generate
variations of the same document

Modify formula dependencies to gener-
ate different results for the same data set

Modify graphic definitions to generate
variations of abuilding facade

Organization

6. Make organizations known
to the computer

Organize information using lists
and tables

Organize yearly datain different sheets

Organize columnsand walls on different
layers

7. Generate new representa- | Generate table from tabbed words

tions from existing ones

Generate bar graph from table

Create 3-D model from 2-D floor plan

Visualization

8. View relevant information,
do not view irrelevant infor-
mation

Magnify document to read small print

View formulas, not results

Do not display patterned elements

9. View parts of spread-out
information to fit simulta-
neously on the screen

Use different views of the same docu-
ment to bring two tables together on the
screen for comparison

Use different views of the same docu-
ment to view column headings and data
at the end of along table

Use two views focused at the ends of
along building facade to make compari-
sons

10. Navigate in global view,
manipulate in local view

Use outline view to view entire docu-
ment and specify location of interest, use
local view to make modification

Use outline view to view entire spread-
sheet and specify location of interest,
use local view to make modification

Use global view to view entire building
and specify location of interest, uselocal
view to make modifications

339

group. This method is more efficient than creating smaller groups
to avoid the exceptions. Figure 1 shows how this strategy is useful
to modify a group of objects with exceptionsin a spreadsheet task.
Strategy 3 can be also be used to modify the format of a paragraph
with exceptions (such as a sentence), or to modify the color of a
group of graphic elements with the exception of one element.
Cognitive analyses of real-world CAD usage have shown that
users often missed opportunities to use the above aggregation
strategies. Use of aggregation strategies could have saved them
between 40% to 75% of the time they took to complete their
drawing tasks [1]. Rea-world users have explicitly stated the
importance of saving time while performing repetitious tasks [3].
These aggregation strategies therefore provide efficiencies that are
of value to users.

2.2 Propagation Strategies

The next two strategiesin Table 1 (Strategies 4 and 5) exploit the
power of computers to propagate modifications to objects which
are connected through explicit dependencies. Strategy 4 makes the
dependencies between objects “known” to the computer so that (1)
new objects inherit properties or receive information from another
object, and (2) modifications can propagate through the
dependencies. For example, word processor users can make
paragraphs which need to share acommon format, to be dependent
on a common definition; when the definition is modified, al the
dependent paragraphs are automatically changed. Similarly,
formulas in a spreadsheet can be linked to dependent data, or
graphic elements in a CAD system can be linked to a common
graphic definition of objects.

Strategy 5 exploits such dependencies to generate variations of the
same information. For example, the strategy could be used to
explore different looks of a document in a word processor,
generate different results in a spreadsheet by altering a variable
(such as an interest rate), or create severa variations of window
designsin abuilding facade while using a CAD system.

i E
-8 §s &<
<293 22

w o (]

(0] (5
ADAB A B D
ABCD cﬂ D
AAAA A A
CBDA EA D
DAAA A A D
AAAA A A
ABDA EA D
ABAA Li ABAA
ADAC MaryAﬂAC D
ABCD PeterABcﬂ D
ACDA RamAcﬂA D

Select All

Drop Exceptions Modify Selection
Figure 1. How Strategy 3 is useful to perform a spreadsheet
task involving the modification of a table containing exceptions
(cdlscontaining “D").

2.3 Organization Strategies

Strategies 6 and 7 exploit the power of computers to construct and
maintain organizations of information. Strategy 6 reminds users to
make the organization of information known to the computer in
order to (1) enhance comprehension, and (2) enable quick
modifications. For example, atable constructed with tabsin aword
processor is hot “known” to the computer as a table, and therefore
the tabular structure may not be maintained when the table
contents are modified. On the other hand, a table which is known
to the computer will be maintained under any modification of its
contents. Similarly, data for different years in a spreadsheet can be
organized in separate sheets for easy access, and different building
elements such as columns and walls can be separated in different
layers. Strategy 7 generates new representations from existing
ones. For example, tabbed tables in word processors can be
mapped to tables and vice versa, numerical data in a spreadsheet
can be represented as charts, and 3-D graphic objects can be
generated from 2-D representations and vice-versa.

2.4 Visualization Strategies

The last three strategies in Table 1 (Strategies 8-10) exploit the
power of computers to view selectively. Strategy 8 can be used to
ater the amount of information displayed by viewing relevant
information, and not viewing irrelevant information. For example,
when text is too small to read while using a word processor, this
strategy could be used to magnify the view instead of changing the
font size. Similarly, in a CAD system, patterned elements can be
undisplayed when not needed in order to make the relevant
information more salient.

Strategy 9 addresses the limited screen space of most computers.
Often, users have tasks which require them to compare or
manipulate objects which are difficult to view simultaneously in a
single view. For example, a user might need to compare the
contents of a table at the beginning of a long word processing
document, to the contents of a table in the middle of the same
document. In such cases, instead of moving back and forth
between the tables, it is more efficient to set up views focused on
each table enabling both tables to be viewed simultaneoudly on the
screen. This strategy is clearly useful in large documents
containing text, numbers, or graphic elements and therefore
generaly useful across applications using such objects. (See [11]
for a discussion on how this strategy affects performance).

Strategy 10 extends the notion of selective viewing to tasks
involving a combination of navigation and manipulation. For
example, a CAD user might need to make many precise changesto
different parts of alarge floor plan. A magnified view is needed to
make precise changes, while aglobal view is needed for navigation
to the next task. One way (as performed by a user in our
ethnographic study [4]) is to zoom in to perform the precise
modifications, and then to zoom out of the same view to navigate
to the next task. A more efficient method is to have one global
view of the file for navigation, and one local view to make the
changes. The user then selects the location of interest in the global
view which automatically updates the local magnified view where
the user can make the precise modifications. As shown in Table 1,
this strategy is useful when modifying a large word processing
document as well as alarge spreadshest.

Based on the above description, the set of ten strategies appears to
be useful across the three application domains especially when
dealing with complex tasks involving large documents. It is
pertinent to repeat that none of these strategies is actualy
necessary to complete complex tasks (therefore making them non-
obligatory as described earlier). For example, users can choose to
operate on individual elements instead of on groups, scroll up and
down large documents which cannot fit on the screen instead of
bringing them together, and so on. On the other hand, users can
benefit by using these general strategies to perform complex tasks.
However, for users to actually execute these dtrategies, they
require specific functionalities to be present in computer
applications. What are these functionalities and are they provided
in commonly used computer applications?

3. FUNCTIONALITIESCONDUCIVE TO
THE USE OF EFFICIENT STRATEGIES

Because users can complete a wide range of tasks without using
efficient strategies, applications need to provide only very basic
functionality for users to get their tasks done. However, if users
need to complete complex tasks efficiently, then applications must
address the functionality needed to execute these strategies. In
addition, as the following discussion will show, the mere presence
of afunctionality may not be sufficient to make it conducive to the
use of efficient strategies.

3.1 Iteration Functionalities

The first column in Table 2 shows the ten strategies discussed
earlier, and the second column shows the functionality required for
their use. The strategies of iteration (Strategies 1-3) all require the
ability to aggregate objects and to perform various operations
(such as duplication and modifications) on those aggregates. In
addition, Strategy 2 requires the user to check the original for
errors, and for completion before replication; Strategy 3 requires
the ability to add and drop objects from an aggregate in order to
handl e exceptions before operating on the aggregate.

However, just implementing functionalities such as add and drop
may not be sufficient to make them conducive for strategy use.
This is because functiondlities interact with many other design
issues which could affect strategy use. For instance, a user might
attempt to strategically reuse and modify an entire building design
(containing hundreds of graphic elements). If the system neither
warns the user that a subsequent operation on the aggregate would
exceed the undo buffer, nor dynamically extends the size of the
undo buffer, the user could make a mistake and have to manually
undo the operation. Such experiences may dissuade users from
exploring and using efficient strategies despite the fact that they
are operational.

In addition to the issue of resource management described above,
other issues relevant to making aggregation conducive for strategy
use include functionality complexity (Should aggregates be
allowed to be nested and persistent, or flat and temporary? If they
are persistent, how can they be stored efficiently and later
disaggregated?), and level of consistency (Should aggregation
functionalities be consistent across al application objects such as
words, paragraphs, pages, and files?).

341

3.2 Propagation Functionalities

The next category of strategies in Table 2 deals with propagation.
These strategies require the ability to link objects to other objects,
or to an abstract definition, and functionality to maintain the
dependencies during modification. Strategy 5, in addition, requires
functionality to manage variations generated when exploiting the
dependenciesin what-if scenarios. Design issues which affect how
conducive propagation functionalities are to strategy use include
how to deal with circularities, propagation update time (dynamic
vs. delayed), and the debugging of links between objects when
propagation produces unintended results.

3.3 Organization Functionalities

The strategies of organization require functionalities that allow
objects to be related in 2-D representations (such as lists, and
trees), or 3-D representations (such as layers) and the maintenance
of these representations during modification of data. Strategy 7, in
addition, requires the ability to map between representations (such
as from tabbed paragraphs to tables). Important design issues
include whether the organization representations are
predetermined, or whether they can be created by the user.

3.4 Visualization Functionalities

The strategies of visualization require different ways to display
information without altering the content of the information.
Strategy 8 requires ways to selectively display the quantity of
information in addition to magnification. Strategy 9 requires
display mechanisms to bring together parts of a document which
cannot ordinarily fit simultaneously on a screen. Finally, Strategy
10 requires functionality which allows global and local displays of
the same information and which allow users to select areas from a
globa view to work in the local view. Important design issues
include refresh capabilities, and window layout and management.

The above functionalities have been described at a fairly abstract
level and can be instantiated in many ways. Do popular
commercial applications provide these functionalities, and if so,
how are they instantiated?

4. FUNCTIONALITIESINSTANTIATED IN

POPULAR COMPUTER APPLICATIONS
Table 1 showed examples of how each of the ten strategies could
be used to perform meaningful tasks in three application domains.
Columns 3-8 in Table 2 show how the same examples could be
executed in six applications, if required functionalities are
provided. The examples are broken down into detail steps each of
which corresponds to an abstract functionality in column 2. These
examples are limited to those required for interacting with basic
objects in the applications (words and paragraphs in word
processors, cells and formulas in spreadsheets, and primitive
graphic elementslike arcs and linesin CAD systems).

The grayed cells in Table 2 represent steps which cannot be
executed in an application, and therefore represent missing
functionalities in those applications. As shown, there were missing
functionalities for each of the strategy groups across the
applications, and each application had at least one missing
functionality. To illustrate how missing functionalities affect tasks,

=ee]]

uiaesado ‘mopuim eq
-0|6 Ul UOITRI0| UO 11D
ZMOPUIM Ul UI-W00Z
TMOPUIM U INO-W00Z
‘SMopuIm om} uado

[e20|

ularRdo ‘Mopuim eq
-016 U1 UoIERI0| U0 11D
ZMOPUIM Ul UI-W00Z
TMOPUIM Ul INO-W00Z
‘SMOpUIM oM} uladO

MBIA feuliou ul adAy
‘MBIA BUI[INO UO 211D

MSIA [ewiou Yiim
SMOpUIM 3UIjINo uadO

MSIA feuliou ul adAy
‘MBIA 3UI[INO UO 211D

MSIA [ewiou Yiim
SMOpUIM aUljino uadO

MBIA [ewliou Ul adAy
‘MBIA 3UI[INO UO 21|D

MBIA [eLLIoU YIIM
SMOpUIM aUljino uado

MBIA [euwliou uladAy
‘MIA UI[INO UO 211D

MBIA [eULIoU YlIMm
SMopuIm aujIno usdo

aouapuods
91100 MIA [220]-[eQ0|D

SMBIA [220] pUe [qo|D

NSIA
20| ul are|ndiuvew
‘MOIA [eqo|B ul 109 es
pue aebineN 0T

MOPUIM 4Jea ulsuon
leoo| aeudoudde 0y |j040s
‘SMopuIm om} uado

MOPUIM YJea Ui suol
Feoo| arlidoudde 0y |j040s
‘SMOpUIM om) uladO

aued ydea ul
suore20| arlidoidde 01
[1040S pUe MOpUIM }1|dS

aued ydea ul
suo 20| arlidoidde 01
(10408 pUe MOpUIM }1|dS

aued yoes ul
Suo1e20| 8k udoidde 0}
[10405 pue mopuim 31jds

aued ydes ul
suoie20| arlidoidde 0y
10408 pue mopuim J1jds

uorew.ojul Juesip
J0 BuIMaIASNOBURLINWIS

Us9.0s

81 uo Apnoauelnwis
111 0] UoITewWIoU | JUe)
SIp Josyed MBIA 6

uoled1}iubew
Ul Wooz Ul Wooz Ul Wooz Ul wooz ul wooz Ul wooz jo Re|dsip aAnx S UO [JLLIOJUI JUEAS PII
|elBp| MBIA JOU Op ‘Uoilew
‘wep ukied Aeidsig ‘wop ulired Aeidsiq se|nwioy Aejds1q se|nwuoy Ae|ds1g syrew elred Aejdsiq syrew elred Aejdsiq 10 Ae|dsip aAd9BS [-IoJul lUeAS PI MBIA '8
uopneziensip
sauo Bul
uveld g-z wouy ue|d -z wouy slaquunu slaquunu a|ge1 01 ydelb a|ge1 01 ydelb suoIfe} | -ISIXe Wol) Suoifeues
Buip|ing g-geriUeS | Bulp|ing g-gakieueD] WoljsHeyoakRBUED | wolseydareRueD] -eled pagael LeAuoD | -esed paqael LeAUoD | -Ussaidal usamiag de [.1dal MaU S1eRUBS))

SuoIe3d1}Ipow

siake| mou ppy SpA3| MaU ppY 188US ppv 188US PPV 9|(fe} 01 MOl PPy 9|(fe} 01 MOl PPy Bunnp Bio ueRN
SPAS| WRRBYIP SpM| WRBYIP SIPaUS 1R IP S1PaYS R HIP suoIeIuEsaIdal ybnoJy) Bendwiod ayy 03 umou
uoS|em 7% |00 azIueblO [uos|em % "jooaziueblO uo sa|gel Alxeekadeld| Uosa|gel Ajreakade|d a|ge19meal) a|ge19meal) s109lqo aziuebiO | uoreziuebio axe N 9
uoneziuebio

solreu soleu soleu soleu soleu soleu

-80S Ul p2103S SUO IR LR/ | 835 Ul pa10Is suoieLieA |-89s Ul palols SUO IR LIBA |-99S Ul PI0IS SUO IR LIeA | -90S Ul poI0Is SUOIR 1A (-80S Ul p2103S SUOITR LR/ suoleLen abeue |\ suon
ssoueIsul saoueIsu| ejnwoy ejnwoy S)uepuadap N0 | -elreA aeeusb 0]Se
[sorepdn >o0|q uisebueyD | semepdn |jeo uissbueyo arepdn erep ulsabiueyd | arepdn epp uisabueyd 8|A1s aulepay a|Aisaulppayd] Aousissuoo upRIN | -Uspuadep 1o|dxT g

syo0[q |e S|jeo | e|nwoy e|nwLoy sjuspuadap Jono
sorepdn »o0|q uisabueyd | serepdn |jpo uissbueyDl arepdnsebueyoerq| arepdn sabueyd erq 9|AIs aulopay a|fisaulppayd| Aouslsisuod uruRN JeINdWOo08Y) 01 UMOUSY
300|q akNuUesU| 1190 pafeys sk nuesu| |}82 01 BNWLIOS MUl |}90 01 B[NWLIOS MUl ‘Bered 019141 Alddy | Bered 019)/1s A|ddw | s109[q0 Juspuadap Mui |saiouspuadap axe N
uonebedouad

10100 AJIpoN 10100 A}IpON 1oy AyIpoN 1oy AyIpoN oy AJIpoN oy AyIpoN aefoibbe AjpoN
adeys e 199eS adeys e 199jeS 1192 199j8S 1182 19919S PJIOM 109 RS PJIOM 109 BS apba.ble Ue 0] ppy o

sdnol

adeus e 19pEsUN adeyse 199psUN [P 198 BsuN |99 199BsuUN pJoM 198fBsUN pJiom 198 psun | srebeibbe ue woly doiq 10 UOITE011pOLL 910J8q
sadeys 199eS sadeys 199j9S 9|0e1 199j9S 9|0e1 199j9S ydeibered 100 S ydeibered 100 pS $199[00 a1efaIfby | suondeoxe ajpueH '€

dnoJb AdoD dnoib AdoD s|pd AdoD s|pd AdoD ydeiBered AdoD ydeiBered AdoD apefalbbe areolidng
sadeys 199eS sadeys 199j0S S|je2 199j8S S|je2 199j9S ydeibered 100 oS ydeibered 100 oS $199[q0 a1eha.bb v 591000 BU L 21058
uossioe.d %Yo uoss1oe.d %9940 "PY |00 %280 [RdS "PY 100 %280 |RdS ‘Beled a0 RS “Beled xoay0 RS arbaibbe x0eyD feuibio %Yo 'z

snipes AJIpoN snipes AJIpoN JUBU0D |2 AJIPOIN JUBJU0D |2 AJIPOIN Qoualuass AJIPON aoualuass AJIPON apbalbfe AjpoN
dnoJb AdoD dnoib AdoD a|ge1 AdoD a|ce1 AdoD ydeiBered AdoD ydelsbered AdoD apefalbbe areo1idng $10[q0 0 dno.B
sadeys Auew 109jpS sadeys Auew 199j0S a|0e1 199j8S a|0e1 199j9S ydeibered 100 oS ydeibered 100 oS s100[q0 aebaIBby| Ajpow pue ssney ‘T
uoljesdy

(€1 A (L0'L"N) (1's"A) (0002) (5N (0002)

@avoomy| |,,r/uonersoidln nLo2Hoels @I99x3 @13jepnawely @PIoOM Ayre salb
®YOSO0UIDIN @3qopy @uosoJoipfuonouny paiinbay| -ajelis jesauay

Aelbay] 'suoiredijdde rejndod XIs Ul patenueIsul S| Alifeuoipuny 1oeaisge ayl moy Jo sajdwexe pue ‘a.1inba .l Aay) Alifeuoiiouny 1oedisge ay) ‘ssifiete.ss retsuab us | "zajgeL

*ABare 11s e 81N39X0 01 P2 1Inbd 1 Aj1feuoiloun) Bussiw s1ussa Jde 1 S|je9

342

three instances will be discussed: The missing functionality for
viewing information simultaneously on the screen in Adobe®
FrameMaker® (required for Strategy 9), the missing functionality
for dropping elements from an aggregate in Microsoft® Exce®
(required for Strategy 3), and the missing functionality of
managing variationsin CAD systems (required for Strategy 6).

4.1 Missing Functionality: Viewing Distant
Information

Figure 2 shows aword processing task where many elements of an
ordered list (the source) located at the end of along document must
be moved to an ordered list (the target) located in the middle of the
file. Depending on the functionality provided in an application,
there are at least four ways to perform this manipulation task. The
first way is to select an element in the source list, cut it, scroll to
the target list and paste it in; then repeat the operations for each
element to be moved. The second way is to copy the entire source
list to a location close to the target location, and then delete the
elements not needed. This avoids the extra back and forth scrolling
but still requires going back to the original list and removing the
elements. A third way is to open a copy of the same file in another
window, scroll to the appropriate source and target locations in
each window and then cut and paste across the windows. A fourth
way is to split the current window into two panes, and then
perform the cut and paste across the panes similar to the method
across windows described above.

While the ability to see different parts of documents using
duplicate windows and split windows has been implemented in
applications such as Microsoft® Word® and Microsoft® Excel®,
Adobe® FrameMaker® does not support these features. Adobe®
FrameMaker® users are therefore constrained to use the first or
second method described above. These methods are time
consuming and error prone. The inability to view different parts of
a document simultaneously is not limited to manipulation tasks. It
also affects tasks where information has to be compared, such as
the task of comparing numbers in tables which are far apart in a
document.

Text
visible on
screen

Text not
visible on
screen

Figure 2. A word processing task requiring the movement of
information (shown as bolded lines) across distant parts of a
document.

343

4.2 Missing Functionality: Dropping from an
Aqggregate

Figure 1 showed a spreadsheet task of modifying al the cellsin a
large spreadsheet to be gray, and left aligned with the exception of
cells containing “D” (which have their own complex formatting).
A quick way to perform this task (using Strategy 3) is to select the
entire document with a single selection, unselect the eight cells
containing “D”, and then apply the two modifications. This
requires nine selections, and two modifications.

However, as shown in Table 2, Microsoft® Excel® does not allow
cells to be unselected from an aggregate. In the absence of this
functionality, the user must select the entire document as before,
apply the two modifications, then select the eight cells and again
apply modifications to restore the exceptions to their origina state.
This requires nine selections, two modifications for the entire
document, and the additional modifications to restore the cells to
their original state. Besides the extra steps of applying the
restoring modifications, the restoration process itself can aso be
error prone as the user may forget the origina state of the
exceptions.

It is not clear why despite countless design revisions, Microsoft®
Excel® does not support droppi ng1 an element from an aggregate,
even though it supports adding to an aggregate. As StarOffice™ (a
spreadsheet application? with equivalent capabilities) supports the
add and drop functionality, it is unlikely that the absence of the
drop feature in Microsoft® Excel® is due to a basic design
constraint.

4.3 Missing Functionality: Managing Varia-
tions

As discussed earlier, Strategy 5 used dependencies to quickly
generate variations in adocument. In a CAD system, this approach
can be used to quickly generate variations for design reviews by a
client. For example, a high-rise building facade may contain 200
arched windows which are all dependent on a common definition.
When the definition of the arched window is changed to a
rectangular window, the change is propagated to all 200 windows.
The floor plan now has 200 rectangular windows. As each of such
variations has different repercussions on other parts of the design
such as the building entrance (which may now also require a
change from arched to rectangular), it is important that the
variations be available for quick inspection before deciding on any
one variation. One way is to save the variations in different files.
However, this approach is expensive as floor planstend to be huge.
Another way isto store only the key parameters (e.g. height, width,
and shape) upon which the variations depend. This enables the
entire variation to be generated when needed without having to
store the entirefile.

As shown in Table 2, this functionality is not available in
MicroStation/J™ and AutoCAD® even though both the systems
are extensively used to design complex buildings in many design

1. When a user shift-clicks on a cell which isaready included in a
selection, it turns white and appears like it has been dropped,
but thisis not the case.

2. Available from: http://www.sun.com/staroffice

firms. This feature has been implemented in Microsoft® Excel®
where different variations of the calculations can be stored and
regenerated by using scenarios.

5. IMPLICATIONSFOR DESIGN AND

TRAINING

The above analysis revealed missing functionality pertinent to the
use of efficient strategies in six applications. While such
information could be useful to designers of the respective products,
the question arises:

Can this analysis of functionality be useful to designers of new
products beyond the scope of the applications analyzed?

The answer to that question liesin the nature of tasks addressed by
the strategies. For example, consider iterative tasks. Such tasks are
SO genera in nature that they have been addressed long before
computers became useful (e.g. printing presses, dish washers, and
photocopying machines) and will continue to be addressed in any
computer application which deals with operations on many
objects. These include the manipulation of files in an operating
system, the manipulation of words and paragraphs in an e-mailing
system, the creation of files in a web authoring application, or the
creation of slides in a presentation application. The generdlity of
the analysis lies in the basic insight that an efficient way to deal
with the iterative task of operating on many objects lies in the
ability to aggregate the objects, and to apply operations on that
aggregate. This ability shifts the task of iterating over each object
from the user to the tool. As this method is relevant irrespective of
the nature of the objects being operated upon (dishes, paragraphs,
shapes, or files), the analysisis useful regardiess of the application
aslong asits users have the task of operating on many objects.

The same generality holds true for the ability to link dependent
objects, organize objects, or view objects selectively. Each of these
categories of tasks (and therefore strategies) is necessary in awide
range of applications currently existing or yet to be developed.
These general categories of tasks and strategies will undoubtedly
grow as developers continue to push the envelope of computer
applications, and as users begin to explore complex tasks made
possible with the new tools.

While this systematic inclusion of functionality may be useful, it
raises the troubling issue of users having to deal with an explosion
of features that they seldom understand or use. This leads to the
next question:

Does the approach suggested in this paper only exacerbate the
problem of featurism already rampant in computer applications?

One of the most troubling aspects of featurism appears to be its
random nature. New features flood application upgrades for
reasons often not clear to users. While the approach discussed in
this paper does focus on checking for the presence of features, it
provides a principled approach to add such features based on
families of functionality. Based on such an analysis, a designer can
make the argument that functionalities which directly support
efficient strategies are more important than others to include in an
application release. Furthermore, if families of features are
consistently available in different applications, the features will no
longer be random as users could expect them to be there whenever

they need to perform classes of tasks. The notion of consistency
across applications leads to a third question:

Can strategy-conducive designs be leveraged to enable the
transfer of strategic knowledge across applications?

Research on the transfer of cognitive skill [13] suggests that
systems which are consistent could enable the transfer of methods
and therefore reduce learning time. This presents the opportunity
for teaching genera strategies and leveraging their generality to
reduce the learning time of new applications. We have been
experimenting with this approach in undergraduate and graduate
classes at Carnegie Méllon University [2, 8]. The hope of such
training is that users will not only learn to use current systems
efficiently, but will aso transfer them to new applications for
which they do not receive training.

6. CONCLUSIONSAND FUTURE
RESEARCH

This paper has led to four conclusions. (1) There is a set of
strategies which appears generaly useful across computer
applications. (2) These strategies not only require specific
functionalities for their execution, but aso require the
functionalities to be carefully designed before they can be
conducive for strategy use. (3) A systematic analysis based on
these strategies can reveal the absence of functionalities even in
major applications. (4) This approach could guide designers to
develop new systems which are conducive to the use of efficient
strategies, and lead to systems which alow the transfer of
knowledge across applications.

Based on these conclusions, we are currently exploring the
development of a method which critiqgues whether a design is
Conduciveto the Use of Efficient Strategies (Design-CUES). This
method would be based on the set of ten general strategies
discussed in this paper, in addition to others we may discover
through future research. For each of the strategies, the critique
would include questions like: Does the design provide tools
necessary to execute the strategy? If it is not provided, is there an
aternate way to perform the task efficiently?

Because efficient strategies are often not discovered, or
opportunities to use them not recognized [1, 3, 9, 12], we are
experimenting how such knowledge can be incorporated into
training [2]. These experiences have led us to explore the
development of a method which critiques whether a training
design teaches knowledge which is Conducive to the Use of
Efficient Strategies (Training-CUES). The critique would include
questions like: Does the training include exercises which teach
users to recognize opportunities to use the strategies? Does the
training include exercises which make users execute the strategies
in meaningful contexts?

The goal of the Design-CUES, and Training-CUES analysis
methods is to operationalize our experience in identifying,
designing for, and teaching efficient strategies. The common
framework of efficient strategies for these methods provides the
opportunity for designers and trainers to collaborate with the
ultimate goal of making users more efficient in the use of complex
computer applications.

7. ACKNOWLEDGMENTS

This research was supported by the National Science Foundation,
Award# |RI-9457628 and EIA-9812607. The views and
conclusions contained in this document are those of the author, and
should not be interpreted as representing the official policies,
either expressed or implied, of NSF or the U. S. Government. The
author thanks B. John, F. Reif, R. Sun, and G. Vallabha for their
contributions.

8. REFERENCES

[1] Bhavnani, S. K. How Architects Draw with Computers: A
Cognitive Analysis of Real-World CAD Interactions,
unpublished Ph.D. dissertation, Carnegie Mellon University,
Pittsburgh (1998).

[2] Bhavnani, S.K. “Strategic Approach to Computer Literacy,”

Proceedings of CHI’ 00, 161-162 (2000).

[3] Bhavnani, SK., Flemming, U., Forsythe, D.E., Garrett, JH.,
Shaw, D.S., and Tsai, A. “CAD Usage in an Architectural
Office: From Observations to Active Assistance,”

Automation in Construction 5, 243-255 (1996).

[4] Bhavnani, SK., and John, B.E. “Delegation and
Circumvention: Two Faces of Efficiency,” Proceedings of

CHI’98, 273-280 (1998).

[5] Bhavnani, SK., and John, B.E. “Exploring the Unredlized
Potential of Computer-Aided Drafting,” Proceedings of

CHI’ 96, 332-339 (1996).

345

Bhavnani, SK., and John, B.E. “From Sufficient to Efficient
Usage: An Analysis of Strategic Knowledge,” Proceedings of
CHI’97, 91-98 (1997).

(6]

[71 Bhavnani, SK., and John, B.E. “The Strategic Use of

Complex Computer Systems,” Human-Computer Interaction,
(in press).

[8] Bhavnani, SK., John, B.E., and Flemming, U. “The Strategic
Use of CAD: An Empirically Inspired, Theory-Based

Course,” Proceedings of CHI’ 99, 42-49 (1999).

[9] Cragg, PB., and King, M. “Spreadsheet Modeling Abuse: An
Opportunity for OR?,” Journal of the Operational Research

Society 44, 743-752 (1993).

[10] Doane, SM., Pellegrino, JW., and Klatzky, R.L. “Expertise
in a Computer Operating System: Conceptuaization and
Performance,” Human-Computer Interaction 5, 267-304

(1990).

[11] Lee, W.O., and Barnard, P.J. “ Precipitating Change in System
Usage by Function Revelation and Problem Reformulation,”
Proceedings of HCI ‘93, 35-47 (1993).

[12] Nilsen, E., Jong H., Olson J,, Biols, 1., and Mutter, S. “The
Growth of Software Skill: A Longitudina Look at Learning
and Performance,” Proceedings of INTERCHI'93, 149-156,
(1993).

[13] Singley, M K., and Anderson, J. R. The Transfer of Cognitive
ill. Harvard University Press, Cambridge, Massachusetts
(1989).

