
CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

Beyond Command Knowledge:

Identifying and Teaching Strategic Knowledge
for Using Complex Computer Applications

Suresh K. Bhavnani
School of Information
University of Michigan

Ann Arbor, MI 48109-1092
Tel: +1-734-615-8281
bhavnani@umich.edu

Frederick Reif
Center for Innovation in Learning

Carnegie Mellon University
Pittsburgh, PA 15213
Tel: +1-412-268-5713
freif@andrew.cmu.edu

Bonnie E. John
HCI Institute

Carnegie Mellon University
Pittsburgh, PA 15213
Tel: +1-412-268-7182

Bonnie.John@cs.cmu.edu

ABSTRACT
Despite experience, many users do not make efficient use of
complex computer applications. We argue that this is
caused by a lack of strategic knowledge that is difficult to
acquire just by knowing how to use commands. To address
this problem, we present efficient and general strategies for
using computer applications, and identify the components
of strategic knowledge required to use them. We propose a
framework for teaching strategic knowledge, and show how
we implemented it in a course for freshman students. In a
controlled study, we compared our approach to the
traditional approach of just teaching commands. The results
show that efficient and general strategies can in fact be
taught to students of diverse backgrounds in a limited time
without harming command knowledge. The experiment also
pinpointed those strategies that can be automatically
learned just from learning commands, and those that require
more practice than we provided. These results are important
to universities and companies that wish to foster more
efficient use of complex computer applications.

Keywords
Strategies, Training, Instruction, GOMS.

INTRODUCTION
Several real-world and experimental studies on the use of
complex computer applications such as UNIX [9], word
processors [12], spreadsheets [11, 8], and CAD [1, 4, 5],
have shown that, despite experience, many users with basic
command knowledge do not progress to an efficient use of
applications. For example, Nilsen et al. [11], observed
experienced spreadsheet users perform a task requiring a
change of width of several adjacent columns with the
exception of one. They found that most of the users
modified the column widths one by one in order to avoid
modifying the exception.

A more efficient method to perform this task is to aggregate
all the columns (including the exception), modify their
widths, and then modify the exception back to its original
width. In applications where objects can be dropped from
an aggregate, another method is to aggregate all the
columns, drop the exception (e.g. through SHIFT-SELECT),
and then modify the remaining set in one step.
Efficient strategies, such as the above used to handle
exceptions, have two characteristics: (1) they are not easily
acquired because they are neither suggested by the design
of individual commands (such as SELECT, MODIFY), nor by
the task [3]; (2) they are generally applicable in a wide
range of applications. For example, the efficient strategies
for modifying many elements with an exception are relevant
in tasks ranging from moving files in an operating system,
to modifying paragraphs in a web-authoring application.
We have come to believe that such strategic knowledge
holds the key to efficient use [3, 5]. Because this strategic
knowledge is difficult to acquire spontaneously just from a
knowledge of commands and tasks, we hypothesized that
users can benefit from explicit training which combines
general strategic knowledge with specific command
knowledge. This paper addresses two questions: (1) Can
strategies be explicitly taught in combination with
commands? (2) Can strategies and commands be taught in
the same time as it takes to teach just commands and
without hurting the learning of commands?
We begin by briefly describing general and efficient
strategies, and show how these strategies were combined
with specific command knowledge in the design of a
training course for freshman students. In a controlled study,
we compared the above approach to a traditional approach
that focused on teaching command knowledge. The results
show that strategic knowledge can indeed be taught to a
diverse population of students without harming command
knowledge, or taking excessive time. Furthermore, there
was evidence for the transfer of knowledge across
applications. The experiment pinpoints which strategies
need special attention, and raises questions to be addressed
in future research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCHI’01, March 31-April 4, 2001, Seattle, WA, USA.
Copyright 2001 ACM 1-58113-327-8/01/0003…$5.00.

229

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

THE NATURE OF EFFICIENT STRATEGIES FOR
COMPLEX COMPUTER APPLICATIONS
Complex computer applications, such as word processors
and spreadsheets typically provide numerous general-
purpose tools that can be used to perform a wide range of
tasks. For example, aggregation tools allow users to group
many kinds of objects such as words, paragraphs, pages,
cells, files, and graphic objects in order to operate on them
as a group. Similarly, formulas in a spreadsheet can be used
to link cells to create many different and complex
relationships.
However, the flexibility offered by such general-purpose
tools comes at a cost. There are often many ways to
combine them to complete the same task. This puts on the
user the burden of knowing the alternate ways and to pick
an appropriate one. For example, the spreadsheet task of
modifying a group of columns with an exception, can be
done in several ways, as described earlier. Furthermore, the
knowledge of these alternate methods, and how to pick
among them, is over and above the knowledge of using the
individual commands. To perform the task efficiently, a
user must know available methods for performing this kind
of task (in this case, dealing with an exception in a group
modification), and must then use the aggregation and drop
tools in the correct sequence to complete the task quickly.
We refer to such goal-directed and nonobligatory methods
as strategies [3, 13]. When we refer to strategic knowledge,
we refer to the knowledge of the alternate methods to
perform a task, and how to choose among them [5]. Our
research results, which agree with several other studies [1,
8, 10, 11], have led us to believe that such strategic
knowledge is difficult to acquire through command
experience alone and, in fact, holds the key to the efficient
use of complex computer systems. The first step, therefore,
was to identify these strategies and understand the nature of
the efficiencies they provide.

Identification of Efficient and General Strategies
The strategy for handling the exception before operating on
a group is more efficient than changing the width of each
column individually, because it exploits the iterative power
of the computer. By specifying to the computer the precise
aggregate of objects to modify, the user effectively
delegates the complete iteration to the computer. This
avoids the time-consuming and error-prone steps of
changing the width of each column.
Because the power of iteration is pervasive in tools offered
in computer applications, we identified several other
iteration strategies [3]. All these strategies exploit different
ways to set up aggregates of objects in order to create,
reuse, and modify them efficiently. For example, an
important strategy, when making many copies of an
aggregate of objects, is to check that the original is correct
and complete. Otherwise, the errors or incompletions
replicate through all the copies and require subsequent
corrections. These corrections can be time-consuming (if

they are noticed at all) and can lead to yet more errors.
GOMS [7] analyses of such iteration strategies estimated a
reduction of between 40%-70% in execution time when
compared to performing the same tasks without these
strategies [1, 3, 4, 6].

Iteration

1. Reuse and modify groups of objects
2. Check original before making copies
3. Handle exceptions before/after modification of groups
Propagation

4. Make dependencies known to the computer
5. Exploit dependencies to generate variations
Organization

6. Make organizations known to the computer
7. Generate new representations from existing ones
Visualization

8. View relevant information, do not view irrelevant information
9. View parts of spread-out information to fit simultaneously on the
screen

Figure 1. General and efficient strategies to exploit four
powers of computers.

Of course, the power of iteration is only one of many that
are offered by computers. Figure 1 shows a set of powers,
and corresponding strategies that we have analyzed in
detail. Besides strategies of iteration, they include strategies
of propagation, organization, and visualization.
Propagation strategies exploit the power of computers to
modify objects that are connected through explicit
dependencies. These strategies allow users to propagate
changes to large numbers of interconnected objects. For
example, Strategy 4 makes the dependencies between
objects “known” to the computer so that (1) new objects
inherit properties or receive information from another
object and (2) modifications can propagate through the
dependencies. This strategy is useful in word processors
through the use of styles. Here a user can create paragraphs
that need to share a common format or to be dependent on a
common definition; when the definition is modified, all the
dependent paragraphs are automatically changed. Similarly,
formulas in a spreadsheet can be linked to dependent data,
or graphic elements in a CAD system can be linked to a
common graphic definition of objects.
Organization strategies exploit the power of computers to
construct and maintain organizations of information. Such
strategies allow for quick modifications of related data. For
example, Strategy 6 reminds users to make the organization
of information known to the computer to (1) enhance
comprehension for the user, and (2) to enable quick
modifications. For example, a table constructed with tabs in
a word processor is not “known” to the computer as a table
(i.e. there is no internal representation of the table
organization); hence the tabular structure may not be
maintained when the table contents are modified. On the
other hand a table, which is known to the computer as a

230

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

table, will be maintained under any modification of its
contents. Similarly, data for different years in a spreadsheet
can be organized in separate sheets for easy access.
Finally, visualization strategies exploit the power of
computers to display information selectively without
altering its content. Strategies of visualization can reduce
visual overload and navigation time. For example, Strategy
9 addresses the limited screen space of most computer
terminals. Often, users have tasks that require them to
compare or manipulate objects that are difficult to view
simultaneously on the screen. For example, a user might
need to compare the contents of a table, at the beginning of
a long word processing document, to the contents of a table
in the middle of the same document. In such cases, instead
of moving back and forth between the tables, it is more
efficient to set up distinct views that focus on each table and
that can be viewed simultaneously on the screen. This
strategy is clearly useful in large documents containing text,
numbers, or graphic elements -- and is therefore generally
useful across applications using such objects.
A detailed description of the strategies shown in Figure 1,
and of the efficiencies they provide, is provided elsewhere
[5]. As in most performance-improvement methods, there is
a trade-off between the effort needed to use a strategy and
the realized gains. For example, using iteration strategies on
a small number of elements may not be as compelling as
using them for many elements. Nor would it be compelling
to use a strategy that saves time when time is not a critical
factor. Strategies are, therefore, more cost-effective for
complex tasks and where the performance gains are of
value to the user. Therefore it is as important to know
when to use a strategy (depending on the task and context),
as to know how to execute it.

Components of Strategic Knowledge
The above identification of efficient and general strategies,
and their analysis through GOMS models [1, 3, 5] enabled
us to identify four components of knowledge required to
use strategic knowledge. (1) Users must know that there
exist explicit strategies to perform particular tasks
efficiently. For example, a user must know that there exists
a strategy to handle exceptions when operating on a group.
(2) Users must know when to use a particular strategy. In
GOMS terms, there must be a selection rule that recognizes
when to use this strategy. (3) Users must know how to
execute a strategy. In GOMS terms, there must be a method
that puts commands in the proper sequence, and operators
to execute the individual commands. (4) To transfer
strategic knowledge to different applications, users must
know that the strategies are general, and therefore can be
used to perform similar tasks in different applications. In
GOMS terms, the selection rules are generally stated and
can be instantiated in different task situations.
Unfortunately there are few opportunities for users to
acquire all the above knowledge components. Help systems
and reference manuals mainly provide knowledge of how to

execute specific commands; user manuals (even those that
contain advanced instruction) often provide task-specific
solutions that are difficult to generalize [1, 5]; face-to-face
and web-based training typically focus on teaching how to
use specific commands in the context of simple tasks; and
office settings rarely provide opportunities for sharing and
discovering efficient methods [2].
If none of the above sources provide all the component
types of strategic knowledge, how can users acquire them?
The following section describes an instructional framework
designed to teach these components deliberately based on
an earlier attempt to teach strategic knowledge [6].

INSTRUCTIONAL DESIGN FRAMEWORK
We hypothesized that one way of ensuring that users
acquire strategic knowledge is to teach it explicitly.
Therefore, each of the knowledge components described
earlier needs to be specifically addressed in the
instructional design. To achieve this aim, we formulated the
following four instructional guidelines:
1. To ensure that students know that there exist efficient
strategies to perform various kinds of tasks, the instruction
must provide explicit strategies and indicate the
performance improvements provided by them.
2. To help students learn when to use a strategy, they must
be given opportunities to explore alternative methods to
perform a task, and to decide how to select an efficient
method. Furthermore, students must be given opportunities
to examine why they chose one method over the others, and
to understand the trade-offs involved.
3. To help students learn how to execute the strategies, the
students must have adequate practice to execute commands
in the context of simple tasks, and must then learn to use
them to execute more complex tasks with the aid of suitable
strategies.
4. To enable students to transfer the strategies across
different applications, students must use the strategies in the
context of other applications, and recognize that they are
the same strategies.
It is not sufficient just to address each of these knowledge
components independently; it is also necessary to specify
how to combine these components in order to construct a
cohesive course. A critical issue is the order in which to
teach commands and strategies. We explored the following
alternatives: (1) Introduce a complex task that motivates a
strategy, decompose the task into simpler subgoals, and
then teach individual commands to achieve those subgoals.
However, this approach failed in an early pilot study as
students did not have enough command knowledge to
generate alternate methods of doing the task. (2) Teach all
the commands in an application, followed by using these
commands together with strategies. However, this approach
entails the disadvantage of excessive time elapsing between
learning the commands and learning how to use them

231

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

Method of instruction Action by instructor Action by student

Command instruction
1. Demonstration of commands Demonstrate set of commands with simple tasks Observe tasks without computer interaction

2. Practice of commands Present practice tasks similar to tasks just demonstrated Perform tasks using commands just learned

3. Repeat for next set of commands

4. Summarization of commands Review commands just taught Observe commands being summarized

Strategy instruction
5. Exploration of alternate methods in

complex task
Present complex task which require commands just
learned and which can be done in more than one way

Perform tasks independently

6. Discussion of efficiency Ask students for alternate ways to complete task and why
they chose one above the others

Discuss alternatives and rationale for
choosing one

7. Demonstration of efficient method Demonstrate task using efficient method Observe demonstration

8. Generalization to strategy Generalize method just used to a strategy and ask
students to locate it in their hardcopy handout

Locate strategy in handout

9. Repeat for next complex task

10. Summarization of strategies Review strategies just taught Observe strategies being summarized

11. Practice of strategies in similar
complex tasks

Present new set of complex tasks similar to those just
practiced but in a different order

Perform all tasks independently

12. Discussion of practice tasks Ask students for strategies they used to perform each task Discuss strategies to perform the tasks

Figure 2. The methods of instruction used to teach commands and strategies in each class.

jointly with strategies. (3) Teach a group of commands in
the context of simple tasks, immediately followed by
strategies that use these commands. We chose this
alternative because the tight coupling between commands
and strategies provides immediate practice for the
commands in a different context. The tight coupling,
therefore, enhances the chances that the strategy is retrieved
when those commands are used.
The preceding design decisions were incorporated in a
course structure illustrated by the general template shown in
Figure 2. The next section will describe how this template
was implemented in our experimental course.

Implementation of the Instructional Framework
The implementation of our course occurred in the context
of an existing seven-week required course for freshman
students at Carnegie Mellon University. The goal of this
course, called the Computing Skills Workshop (CSW), is to
ensure that all freshman students have basic skills to use
computer applications. CSW focuses on teaching basic
commands to perform simple networking tasks using
UNIX®, simple word processing tasks using Microsoft®
Word® (MSWord), and simple spreadsheet tasks using
Microsoft® Excel® (MSExcel). To enable an experimental
comparison, our implementation of the course taught the
same commands, taught the same sequence of applications
(UNIX, MSWord, then Excel), and took the same
instruction time as the regular CSW instruction (3 classes
each for UNIX, MSWord, and MSExcel, each class taking
50 minutes). The major change, as described below, was (1)
in the strategic content, and (2) in the methods of
instruction used to blend the general strategic knowledge
with the specific commands. The two approaches could be

taught in the same amount of time because the strategic
content was melded tightly with command practice, and
there was more efficient use of class time through the use of
scripts given to the experimental instructors (as will be
discussed later).
 The constraints of limited time, and of teaching only a
subset of commands in an application, are typical of courses
offered in other universities and in software companies.
Therefore, the structure of our implementation is general
and potentially useful in other contexts.
At the start of each class, the students received a hardcopy
handout of the strategies shown in Figure 1. This handout
also contained, for the application currently taught, specific
commands and examples of tasks using each strategy.
Furthermore, it contained commands and examples for the
applications taught in previous classes. This cumulative
approach was used to emphasize that the strategies are
general and useful across the applications.
Our course implementation followed the template shown in
Figure 2. The first column of the template describes the
methods of instruction to be used for each step, the second
and third columns describe the corresponding actions to be
performed by the instructors and students
The command instruction began with a demonstration of a
small set of commands in the context of simple tasks (Step
1). For example, to introduce different ways to view a
document in MSWord, we first demonstrated SPLIT
WINDOW and SCROLL. These commands were demonstrated
in the context of a three-page document that contained a
table at the beginning and at the end of the document. The
instructor demonstrated how to split the screen by dragging

232

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

the button located above the scroll. She then brought the
tables together on the screen by splitting the screen into two
panes, and then scrolling each pane to view the tables.
The students were then told to experiment with the
commands just taught (Step 2). This demonstration and
practice was followed by instruction for the next set of
commands (Step 3). In this case these commands involved
using NEW WINDOW and ZOOM. All the commands taught
up to then in the class were then summarized (Step 4).
The command instruction was followed by strategy
instruction. For example, the instructor opened a three-page
document that had 11 different bulleted lists. The students
were asked how they would move three non-adjacent
bulleted items in the last list to the third list in the
document. Here the instructor encouraged the students to
discuss alternate methods to do the task by using the
commands they had just learned (Step 5). Then the
instructor stated that, by using SPLIT WINDOW or NEW
WINDOW to move items from one list to another, the
advantage gained was to avoid having to scroll up and
down (Step 6). The instructor demonstrated this method in
the practice document (Step 7). This method was then
generalized to the strategy: View parts of spread-out
information to fit simultaneously on the screen. The
students were asked to locate this strategy in their handout
(Step 8).
Steps 5-8 were repeated for other complex tasks
demonstrating the utility of other strategies (Step 9). All the
strategies presented in the class were then summarized by
explicitly pointing them out in the handout (Step 10). The
students were then given similar complex tasks for practice
(Step 11) each of which was discussed (Step 12). The
above steps were repeated for each application (UNIX,
MSWord, and Excel).
The above approach contrasts with the traditional approach
of teaching such applications. For example, CSW
instructors are trained to teach commands in the context of
simple tasks (Steps 1-3). However, the students never
receive instruction of how to assemble the commands to
perform complex tasks efficiently, nor do they receive any
instruction on the general nature of efficient methods and
thus don't acquire strategic knowledge that they could use in
other applications.

ASSESSMENT OF INSTRUCTIONAL DESIGN
Our proposed instructional design is not only novel in
addressing the explicit teaching of strategic knowledge, but
also faces the constraints of limited time available to teach
such knowledge together with commands. Hence it seemed
imperative to assess the efficacy of this instructional design.
Therefore, we compared our instructional design to the
existing CSW course through a controlled experiment
addressing the following questions:
1. Does the proposed experimental approach help the
acquisition of strategic knowledge?

2. Does this approach harm the acquisition of command
knowledge?
The experimental study was run in the context of the
existing CSW course. Because CSW is designed to provide
hands-on instruction, it is held in a laboratory with desktop
computers. The course is open to technical students (those
majoring in non-arts fields such as chemistry, computer
science, or psychology) in the first seven weeks of the fall
semester, and open solely to arts students (those majoring in
fine arts, architecture, or drama) in the next seven weeks.
These separate offerings of the course had been instituted
by the CSW administrators because the arts students
typically have much less experience with computers and
thus need more assistance.
The separation enabled us to run our experimental
comparison on both populations. Technical students
participated in Experiment-1, and Arts students participated
in Experiment-2. The main goal of these initial experiments
was to compare the efficacy of the overall approaches.
(Investigation of the various factors responsible for the
differences between the control and experimental
approaches was left to future experiments.)

Method for Experiment-1
In Experiment-1, eight of the most heavily attended CSW
sections were chosen for the study. Each section contained
approximately 20 students, and was balanced by student
major (i.e., each section had equal numbers of students
from each technical discipline). Four sections received the
instruction ordinarily provided by CSW and formed the
control group (with a total of 87 students). The other four
sections received instruction using the experimental
strategy-focused approach and formed the experimental
group (with a total of 84 students). None of the students
were informed that they were part of an experiment (a
common practice in educational testing and approved by the
Human-Subjects Clearance Committee).

Students in the experimental sections were taught all the
strategies (shown in Figure 1) in the context of UNIX,
MSWord, and MSExcel with the following exceptions:
Strategies 4 and 5 were not taught in UNIX as the
commands to execute them were too advanced for the CSW
course content. Strategy 9 was not taught in MSExcel to
enable us to test if students could transfer that strategy from
the earlier instruction. (However, commands necessary to
execute Strategy 9 were taught in MSExcel.)

Instructor Training
Each section in the course had a main instructor and a
secondary instructor all of whom were undergraduate
students at the university. The main instructor taught the
course content in front of the classroom through a desktop
computer connected to an overhead projector. The role of
the secondary instructor was to provide assistance to
students who had difficulty following the instruction, or had
trouble with the computers. All the main instructors in the

233

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

experimental and control groups had taught CSW before,
had equivalent experience in teaching CSW, and were
considered to be effective instructors by the CSW
administrators. All instructors received five days of training
from the CSW administrators. This training focused on how
to teach the commands in each application, and also
provided logistical training on giving exams, grading, and
pointers for effective training. Instructors were given a list
of commands to teach in each application, reading material
based on a commercial training guide that focused on
commands, and example files to illustrate the use of
commands. Each instructor practiced teaching a few
commands, and received critiques from the CSW
administrators.
The instructors for the experimental sections of the course
received additional training for 5 days on how to teach
strategies and practiced the approach with critiques. To
help the instructors cope with the strategic content and the
time constraints, and also to avoid possible inconsistencies
between the two instructors, we gave them a script outlining
what and how they were to teach the course. They were
expected to use their own words and interaction style to
elaborate the outline.

Post-test
At the end of the course, and after the usual CSW exams,
we conducted a post-test. Students in both groups were
offered $25 to perform tasks in UNIX, MSWord, and
MSExcel. They were told that the tasks were to help
improve the course, and that participation would not affect
their grades.

The post-test tasks were designed to take a maximum of an
hour and a half, and provided 13 opportunities (2 in UNIX,
5 in MSWord1, and 6 in MSExcel) to use the 9 efficient
strategies shown in Figure 1. Not all strategies in all
applications could be tested because the resulting length of
the post-test would then have been excessive. Therefore,
there was only one strategy that was tested in all the three
applications, and two that were tested in MSWord and
MSExcel. The post-test tasks were different in content from
the tasks taught in the experimental course, but obviously
offered opportunities to use the same strategies.

In addition to attempting the tasks, the students were asked
to provide handwritten descriptions of what methods they
used to complete the tasks and of why they chose those
methods. Interactions were recorded through a screen
capture tool and command recorders. MSWord and
MSExcel documents containing completed tasks were also
collected.

1 The MSWord task that attempted to test Strategy 3 failed

as it did not justify using the strategy. This left 12
opportunities to use 8 strategies.

Method for Experiment-2
The method for Experiment-2 was similar to that for
Experiment-1 except that the population consisted only of
arts students, Furthermore, there were only two CSW
sections with 24 arts students in the control group, and 25
art students in the experimental group. (The smaller number
of students and sections reflect the smaller number of arts
students on the campus.) The request to participate in the
post-test yielded 17 from the control group, and 19 from the
experimental group.

RESULTS AND DISCUSSION
Figure 3 shows the results for strategy use in the post-test
for both experiments. The first column shows the strategy
opportunities provided in the post-tests. For example, the
strategy Make dependencies known to the computer
(opportunity E in the figure), executed through styles, was
one of the strategy opportunities provided by the MSWord
post-test tasks. The numbers in the cells show the
percentage of students who used each opportunity.

Effect on Recognizing and Executing Strategy
Opportunities
In Experiment-1, as shown by the dark gray cells in
Columns 2 and 3, the experimental group did significantly
better than the control group in exploiting seven strategy
opportunities (p<0.05 for each of the seven strategies based
on chi-square tests on the frequencies in each group).
These results show that students could in fact be taught to
recognize opportunities to use efficient strategies, and to
execute them. Furthermore, they show that this kind of
strategic knowledge requires more than command
instruction.
For example, each of the instructors in the control group
explicitly taught how to use the split window command.
However, only 10% of the students in that group used it in
the post-test task requiring comparisons of distant cells in a
large spreadsheet (strategy opportunity G). In contrast, the
instructors in the experimental group taught the split
window command to avoid scrolling and thereby illustrated
the strategy View parts of spread-out information to fit
simultaneously on the screen. As a result, 58% of the
students in the experimental group used this strategy in the
post-test.
Although the students in the experimental group also did
significantly better than those in the control group in
exploiting strategy opportunities B and H, the actual
numbers of students exploiting these opportunities was
small. Therefore it appears that effective teaching of these
strategies would require more practice than we provided in
our instruction.
In the case of five other strategies (shown in white), there
was no significant difference in strategy use by students in
the experimental and control groups. This result shows that
some strategic knowledge can be automatically acquired
just by learning commands. For example, even though the

234

CHI 2001 • 31 MARCH – 5 APRIL Papers

anyone. anywhere.

students in the control group were given only command
instruction, all of them recognized the opportunity to use
formulas in the spreadsheet task (strategy opportunity I).
An analysis of these strategy opportunities revealed a
possible reason why mere command instruction may suffice
in some cases. For certain commands, once they are
learned, the disadvantages of not using them are so great
that the alternate methods pale by comparison and are
possibly not even considered. For example, after having
learned how to use formulas, doing manual calculations in a
spreadsheet task appears ridiculous. In such cases the issue
of strategic knowledge is moot as there is effectively no
competition.
Another possible reason why certain opportunities were
equally recognized in both groups might be due to the
commands tested in the regular CSW exams. The
instructors in the control group may have particularly
emphasized these commands by providing more practice.
Such practice, with different examples, could have helped
students to learn the strategic knowledge of recognizing
opportunities to use these commands. For example, both
tables and formulas were tested in the CSW exams and
there was no difference between the groups for strategies
that used these commands.

Effect on Transfer
While the above analysis reveals whether a strategy
opportunity was recognized and used, it does not reveal if
the general form of the strategy was learned. For example,
a student may know when and how to use a formula for a
spreadsheet task, but may not know that formulas are just
one example of setting up dependencies to be exploited
later. If the strategy is not learned at the general level, it is
less likely to be used in other situations involving different
commands.
The question whether the students in the experimental
group actually did acquire the general form of the strategy
may be answered by a lengthy analysis of the self-reports
provided by the students in the post-test. We are still in the
process of analyzing this very rich source of data that may
reveal evidence of strategic thinking. However, the current
data provide some evidence that the experimental students
did learn the general form of at least one strategy. As
discussed before, we deliberately did not teach the strategy
View parts of spread-out information to fit simultaneously
on the screen in MSExcel in order to test whether students
could transfer this strategy from MSWord. Figure 3 shows
that significantly more students in the experimental group
did recognize the opportunity to use split windows in
MSExcel (strategy opportunity G) even though they were
not taught the strategy in this application. While not
conclusive, this result does suggest that the experimental
students did acquire the general form of the strategy that
enabled them to recognize its use in another application.

Effect on Command Knowledge
To check whether the added strategy content could harm
the acquisition of command knowledge, we analyzed
student scores in the regular CSW exams that tested mainly
command knowledge. An analysis of students' mean scores
revealed no statistical difference between the two groups
(96.07 control, 95.54 experimental). These data therefore
indicate that the experimental approach did not harm the
acquisition of command knowledge.

Figure 3. The percentage of students in the control and
experimental groups who used the general strategies in
both experiments. The dark gray cells show statistically
significant differences based on chi-square tests on the
frequencies in each group.

Effect on Diverse Populations
The results in Experiment-2 were similar to those in
Experiment-1. As shown in Figure 3, Columns 4 and 5
show a pattern of results similar to those in Columns 2, and
3. Again, as shown by the dark gray cells, the experimental
group did significantly better than the control group in six
strategy opportunities. Similar to Experiment-1, the number
of students exploiting strategy opportunities B and H was
very small. This provides further evidence that these
strategies are difficult to learn without more practice. In six

Strategy opportunities
in post-test

Experiment-1
(Tech. Stds.)

Experiment-2
(Arts Stds.)

 Ctrl. Exp. Ctrl. Exp.

UNIX

A. Reuse and modify groups of
objects

21% 79% 12% 42%

B. Check original before making
copies/operating on objects

0% 13% 0% 5%

MSWord

C. Reuse and modify groups of
objects

86% 100% 59% 94%

D. Make organizations known to the
computer

88% 94% 100% 100%

E. Make dependencies known to the
computer

5% 62% 12% 67%

F. Exploit dependencies to generate
variations

0% 46% 6% 39%

MSExcel

G. View parts of spread-out
information to fit simultaneously
on the screen

10% 58% 0% 56%

H. View relevant information, do not
view irrelevant information

10% 29% 18% 11%

I. Make dependencies known to the
computer

100% 100% 92% 100%

J. Reuse and modify groups of
objects

100% 100% 100% 100%

K. Exploit dependencies to generate
variations

86% 95% 83% 93%

L. Generate new representations from
existing ones

95% 98% 53% 89%

235

Papers CHI 2001 • 31 MARCH – 5 APRIL

 Volume No. 3, Issue No. 1 CHI 2001

other strategy opportunities (shown in white), most users in
both the experimental and control groups used the strategies
with no significant difference between the two groups.
Finally, the arts students did very well (scoring an average
of 95%) on the CSW test assessing command knowledge.
Therefore, our instructional approach did not harm the
acquisition of command knowledge. The results of
Experiment-2 thus show that the course based on our
instructional approach was equally useful and effective for
students with appreciably different backgrounds.

SUMMARY AND FUTURE RESEARCH
To address the widespread inefficient use of complex
computer applications, this paper identified a set of efficient
and general strategies for using applications effectively. We
then formulated a general instructional framework for
teaching such strategic knowledge explicitly in combination
with command knowledge. Furthermore, we implemented
this framework in a university course for college freshmen
students and carried out a controlled experiment in which
we compared our approach to the traditional approach that
predominantly focused on teaching commands.
The results of this experiment showed that our proposed
approach: (1) enables students to learn efficient strategies;
(2) benefits student populations with either technical or
non-technical backgrounds; (3) does not require extra time
compared to the traditional approach focused on command
knowledge; (4) does not harm the acquisition of command
knowledge; (5) has the potential of enabling the transfer of
strategic knowledge across different applications.
This approach therefore provides a promising alternative to
traditional training, especially because its implementation is
not appreciably more complex than teaching only
commands, and because it does not require excessive time.
For example, our course materials have been used at the
University of Western Australia to teach a similar
freshman-level course with similar results [personal
communication, Richard Thomas]. Furthermore, we intend
to teach a similar the course in Spring 2001 at the
University of Michigan.
The experiment revealed that some strategies may be
automatically acquired just by learning commands. On the
other hand, it also showed that other important strategies
are not that easily acquired but can be learned as a result of
explicit instruction.
It is possible that the efficacy of some of our instruction
might be due to the fact that the instructors in the
experimental group, unlike those in the control group,
followed a well-designed script. Therefore, we are planning
at the University of Michigan another experiment where
instructors in both groups will be given well-designed
scripts for their respective approaches.
In an age where computers provide a proliferation of
commands and exhibit increasingly crowded interfaces, the
learning of general strategies can provide users with more

coherent knowledge facilitating the efficient use of complex
computer applications. Furthermore, the generality of this
knowledge should permit its application to new applications
beyond those where the strategies were originally learned.

ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation, Award# IRI-9457628 and EIA-9812607. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of NSF or
the U. S. Government. The authors thank F. Peck and G.
Vallabha for their contributions.

REFERENCES
1. Bhavnani, S. K. How Architects Draw with Computers: A

Cognitive Analysis of Real-World CAD Interactions,
unpublished Ph.D. dissertation, 1998, Carnegie Mellon
University, Pittsburgh.

2. Bhavnani, S.K., Flemming, U., Forsythe, D.E., Garrett, J.H.,
Shaw, D.S., and Tsai, A. CAD Usage in an Architectural
Office: From Observations to Active Assistance. Automation
in Construction 5(1996), 243-255.

3. Bhavnani, S.K., and John, B.E. From Sufficient to Efficient
Usage: An Analysis of Strategic Knowledge. Proceedings of
CHI’97 (1997), 91-98.

4. Bhavnani, S.K., and John, B.E. Delegation and
Circumvention: Two Faces of Efficiency. Proceedings of
CHI’98 (1998), 273-280.

5. Bhavnani, S.K., and John, B.E. The Strategic Use of Complex
Computer Applications. Human-Computer Interaction (in
press).

6. Bhavnani, S.K., John, B.E., and Flemming, U. The Strategic
Use of CAD: An Empirically Inspired, Theory-Based Course.
Proceedings of CHI’99 (1999), 42-49.

7. Card, S.K., Moran, T.P., and Newell, A. The Psychology of
Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.

8. Cragg, P.B. and King, M. Spreadsheet Modeling Abuse: An
Opportunity for OR? Journal of the Operational Research
Society 44 (1993), 743-752.

9. Doane, S.M., Pellegrino, J.W., and Klatzky, R.L. Expertise in
a Computer Operating System: Conceptualization and
Performance. Human-Computer Interaction 5 (1990), 267-
304.

10. Lee, W.O., Barnard, P.J. Precipitating Change in System
Usage by Function Revelation and Problem Reformulation.
Proceedings of HCI ‘93 (1993), 35-47.

11. Nilsen, E., Jong H., Olson J., Biolsi, I., and Mutter, S. The
Growth of Software Skill: A Longitudinal Look at Learning
and Performance. Proceedings of INTERCHI'93. (1993), 149-
156.

12. Rosson, M. Patterns of Experience in Text Editing.
Proceedings of CHI ’83 (1983), 171-175.

13. Siegler, R.S., and Jenkins, E. How Children Discover New
Strategies. Lawrence Erlbaum Associates, New Jersey, 1989.

236

